双车道元胞自动机交通流Matlab仿真

收录时间:2014-02-08
资源分类:Matlab 工具:MATLAB 7.6 (R2008a)

该程序部分代码后缀名为.p,,无法预览所有源码内容,但可以正常运行。请下载的同志注意。

元胞自动机交通流matlab仿真,多车道。

元胞自动机(Cellular Automata,简称CA,也有人译为细胞自动机、点格自动机、分子自动机或单元自动机)。是一时间和空间都离散的动力系统。散布在规则格网 (Lattice Grid)中的每一元胞(Cell)取有限的离散状态,遵循同样的作用规则,依据确定的局部规则作同步更新。大量元胞通过简单的相互作用而构成动态系统的演化。不同于一般的动力学模型,元胞自动机不是由严格定义的物理方程或函数确定,而是用一系列模型构造的规则构成。凡是满足这些规则的模型都可以算作是元胞自动机模型。因此,元胞自动机是一类模型的总称,或者说是一个方法框架。其特点是时间、空间、状态都离散,每个变量只取有限多个状态,且其状态改变的规则在时间和空间上都是局部的。

    元胞自动机的构建没有固定的数学公式,构成方式繁杂,变种很多,行为复杂。故其分类难度也较大,自元胞自动机产生以来,对于元胞自动机分类的研究就是元胞自动机的一个重要的研究课题和核心理论,在基于不同的出发点,元胞自动机可有多种分类,其中,最具影响力的当属S. Wolfram在80年代初做的基于动力学行为的元胞自动机分类,而基于维数的元胞自动机分类也是最简单和最常用的划分。除此之外,在1990年,Howard A.Gutowitz提出了基于元胞自动机行为的马尔科夫概率量测的层次化、参量化的分类体系(Gutowitz, H. A. ,1990)。下面就上述的前两种分类作进一步的介绍。同时就几种特殊类型的元胞自动机进行介绍和探讨S. Wolfrarm在详细分忻研究了一维元胞自动机的演化行为,并在大量的计算机实验的基础上,将所有元胞自动机的动力学行为归纳为四大类(Wolfram. S.,1986):

    (1)平稳型:自任何初始状态开始,经过一定时间运行后,元胞空间趋于一个空间平稳的构形,这里空间平稳即指每一个元胞处于固定状态。不随时间变化而变化。

    (2)周期型:经过一定时间运行后,元胞空间趋于一系列简单的固定结构(Stable Paterns)或周期结构(Perlodical Patterns)。由于这些结构可看作是一种滤波器(Filter),故可应用到图像处理的研究中。

    (3)混沌型:自任何初始状态开始,经过一定时间运行后,元胞自动机表现出混沌的非周期行为,所生成的结构的统汁特征不再变止,通常表现为分形分维特征。

    (4)复杂型:出现复杂的局部结构,或者说是局部的混沌,其中有些会不断地传播。从另一角度,元胞自动机可视为动力系统,因而可将初试点、轨道、不动点、周期轨和终极轨等一系列概念用到元胞自动机的研究中,上述分类,又可以分别描述为(谭跃进,1996;谢惠民,1994;李才伟、1997);

(1)均匀状态,即点态吸引子,或称不动点;

(2)简单的周期结构,即周期性吸引子,或称周期轨; 

(3)混沌的非周期性模式,即混沌吸引子;

(4)这第四类行为可以与生命系统等复杂系统中的自组织现象相比拟,但在连续系统中没有相对应的模式。但从研究元胞自动机的角度讲,最具研究价值的具有第四类行为的元胞自动机,因为这类元胞自动机被认为具有"突现计算"(Emergent Computation)功能,研究表明,可以用作广义计算机(Universal Computer)以仿真任意复杂的计算过程。另外,此类元胞自动机在发展过程中还表现出很强的不可逆(lrreversibility)特征,而且,这种元胞自动机在若干有限循环后,有可能会 "死"掉,即所有元胞的状态变为零。

交通流,英文:【traffic flow】是指某一时段内,连续通过道路某一断面的车辆或行人的统称。

定量描述交通流可用 3个参数:

 

①交通流量,又称交通量,表示交通流在单位时间内通过道路指定断面的车辆数量,单位是辆/小时或辆/日;

 

②交通流速度,简称流速,表示交通流流动的快慢,单位是米/秒或公里/小时;

 

③交通流密度,表示交通流的疏密程度,即道路单位长度上含有车辆的数量,单位是辆/公里。3个参数之间的关系是:交通流量为交通流速度和交通流密度的乘积。道路上车辆很少时,驾驶员可选择较高速度,这时交通流速度较大,但因交通流密度小,所以交通流量也比较小。随着路上的车辆增多,交通流密度增大,车辆的行驶速度虽受到前后车辆的约束而有所下降,流速降低,但交通流量还是增加,直到某一种条件下,流速和密度的乘积达到最大值,即交通流量为最大时为止。这时的流速称为最佳速度,密度称为最佳密度。如果路上车辆再增加,密度继续增大,流速继续下降,尽管密度较大,但因流速较小,所以流量反而下降,直到密度为最大值,造成道路阻塞,车辆无法行驶,流速等于零,交通流量也等于零为止(如图所示[交通流量、交通流速度、交通流密度关系图])。

 

速度和密度的关系有人用直线表示,也有人用曲线表示。因此流量和密度的关系也有不同的表示方式。从30年代初开始,就有一些学者试图从理论上阐明交通流的运行规律(见交通流理论)。

 

 

交通流理论是运用物理和数学的定律来描述交通特性的一门边缘学科.它的应用能更好地解析交通现象及其本质,使道路发挥最大功效.作为交通工程学的基础理,-多年来交通流理论广泛应用于交通运输工程的许多研究领域:如交通规划、交通控制道路与交通工程设施设计等方面[1]

 

1.概率论的应用

 

主要应用概率论方法研究车流的分布规律。车流的统计分布是用概率论方法研究交通现象的基础,同时也直接应用在转弯车道长度的设计、行人过街控制信号的设计、通行能力及车速标准的确定等方面。常用概率论方法研究的车流分布有车流计数分布、间隔分布和车速分布三种

 

2.排队论的应用

 

排队论是研究分析服务对象发生排队拥挤现象的一种数学理论。是运筹学的一个重要内容。排队论主要研究等待时间,排队长度的概率分布,以便合理协调“服务对象”与“服务系统”之间的关系,使之既能满足“服务对象”的要求,又能最大限度地节省服务系统的经费。

 

3.车流波动理论

 

将交通流比拟为流体,把车流密度的疏密变化比拟成水波的起伏而抽象为车流波。车流波动理论就是假设车流因道路或交通状况的改变而引起车流密度的改变时,在车流中产生车流波的传播,分析车流波的传播速度可寻求车流流量和密度同车速之间的关系的一种理论。

 

4.跟车理论。

 

运用动力学方法研究车辆列队在无法超车的单一车道上行驶时,后车跟随前车的行驶状态,并用数学模式表达而且加以阐明的一种理论。因考察的对象是单辆车辆在行驶过程中的相互关系,所以是一种微观的分析方法。在连续行车情况下,后车要与前车保持一定的安全距离而经常随着前车改变车速,这种改变可简略地表达为:  后车车速变化-驾驶员反应灵敏度*前车车速变化。

Matlab Traffic Flow Model based on Cellular Automata (CA)

 Matlab Traffic Flow Model based on Cellular Automata (CA).

A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model studied in computability theory, mathematics, physics, complexity science, theoretical biology and microstructure modeling. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays.[2]

A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t=0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the stochastic cellular automaton and asynchronous cellular automaton.

The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, Stephen Wolfram engaged in a systematic study of one-dimensional cellular automata, or what he calls elementary cellular automata; his research assistant Matthew Cook showed that one of these rules is Turing-complete. Wolfram published A New Kind of Science in 2002, claiming that cellular automata have applications in many fields of science. These include computer processors and cryptography.

The primary classifications of cellular automata as outlined by Wolfram are numbered one to four. They are, in order, automata in which patterns generally stabilize into homogenity, automata in which patterns evolve into mostly stable or oscillating structures, automata in which patterns evolve in a seemingly chaotic fashion, and automata in which patterns become extremely complex and may last for a long time, with stable local structures. This last class are thought to be computationally universal, or capable of simulating a Turing machine. Special types of cellular automata are those which are reversible, in which only a single configuration leads directly to a subsequent one, and totalistic, in which the future value of individual cells depend on the total value of a group of neighboring cells. Cellular automata can simulate a variety of real-world systems, including biological and chemical ones.

For traffic flow in a computer network see traffic flow (computer networking)

For traffic equations in a queueing network see traffic equations

In mathematics and civil engineering, traffic flow is the study of interactions between vehicles, drivers, and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal road network with efficient movement of traffic and minimal traffic congestion problems.

文件下载列表
附件内容(只显示45中的9个)
CountingNextStepVehicleState.m  IfAddNewCar.m  IsCellTaken.m  main_tca.m  RefreshCellSpaceWithNewPosition.m  ReleaseCellTakenState.m  ReleaseVehicleState.m  ResultsPlotting.m  TrafficSimulating.m  
标签: 元胞自动机 交通流 
更多

目前尚无评论

用户反馈   关于我们
Copyright (©) ZHIHUISHI.COM 2013 All Rights Reserved.
京ICP备18060134号-3